Вопрос задан 25.06.2019 в 23:03. Предмет Геометрия. Спрашивает Аникин Дима.

Треугольник MCB- равносторонний, BK и MP- его медианы, пересекающиеся в точке O. Докажите равенство

треугольников BOP и MOK.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мирная-Филиппова Валерия.
В равностороннем треугольнике все углы равны и медиана является биссектрисой и высотой. Поэтому в треугольниках BOP и MOK угол КМО=углу РВО (30 град), угол ОКМ= углу ОРВ (90 град). МК=РВ.  
Если сторона и два прилежащие к ней угла одного треугольника равны стороне и двум прилежащим углам второго треугольника, то такие треугольники равны. Поэтому треугольник ВОР равен треугольнику МОК.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос