Вопрос задан 23.06.2019 в 16:23. Предмет Геометрия. Спрашивает Митасов Васёк.

В углах смежных с углами ромба проведены биссектрисы, доказать что при их пересечении образуется

прямоугольник.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лучин Максим.
Биссектрисы смежных углов перпендикулярны.
[Сумма смежных углов равна 180°; угол между биссектрисами смежных углов равен полусумме смежных углов, т.е. 90°.]
∠A1AO=∠A1BO=90°

Диагонали ромба пересекаются под прямым углом.
∠AOB=90°

Если у четырехугольника три угла прямые, то он является прямоугольником.
[Сумма углов четырехугольника равна 360°; 360°-90°·3=90°; четырехугольник, у которого противоположные углы равны, является параллелограммом; параллелограмм, у которого (хотя бы) один угол прямой, является прямоугольником.]
∠AA1B=90°

Аналогично другие углы четырехугольника, образованного пересечением биссектрис смежных углов ромба, прямые.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос