
Вопрос задан 23.05.2018 в 13:17.
Предмет Геометрия.
Спрашивает Подолей Каріна.
Треугольник СDЕ задан координатами своих вершин: С ( 2; 2 ), D (6; 5 ), Е ( 5; - 2 ). Найдите
биссектрису, проведённую из верши-ны С.

Ответы на вопрос

Отвечает Каба Влад.
По формуле вектора найдем стороны СД=√( х2-х1)²+(у2-у1)²=√( 6-2)²+(5-2)²= 5см
так же и ДЕ= 5√2 и СЕ= 5, так как СЕ= СД=5, то треугольник СДЕ - равнобедренный, а биссектриса пусть СН является и биссектрисой и медианой и высотой, так как высотой то треугольник СНД- прямоугольный значит по теореме Пифагора найдем СН
СН²= СД²- НД²= 25-(5√2/2)²=√12.5


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili