
Вопрос задан 20.06.2019 в 21:06.
Предмет Геометрия.
Спрашивает Сусь Евгения.
Площадь прямоугольного треугольника равна 578 деленное на 3 . Один из острых углов равен 30°.
Найдите длину катета, прилежащего к этому углу.

Ответы на вопрос

Отвечает Кузьменко Настя.
Расс. треугольник ABC.Угол В=30.
S=(ABxBCxsin30)/2. BC=cos30xAB.
(ABxBCxsin30)/2= 578(корень из 3) деленное на 3. Подставляем вместо BC cos30xAB, Получаем: (AB^2xcos30xsin30)/2=578(корень из 3) деленное на 3.
(AB^2x(корень из 3))/8=578(корень из 3) деленное на 3. AB^2= 4624/3; AB= 68/(корень из трех). BC=((корень из 3)/2)x(68/(корень из 3))=34 см.
Ответ:34
S=(ABxBCxsin30)/2. BC=cos30xAB.
(ABxBCxsin30)/2= 578(корень из 3) деленное на 3. Подставляем вместо BC cos30xAB, Получаем: (AB^2xcos30xsin30)/2=578(корень из 3) деленное на 3.
(AB^2x(корень из 3))/8=578(корень из 3) деленное на 3. AB^2= 4624/3; AB= 68/(корень из трех). BC=((корень из 3)/2)x(68/(корень из 3))=34 см.
Ответ:34


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili