
Вопрос задан 23.05.2018 в 00:28.
Предмет Геометрия.
Спрашивает Lemak Vika.
Найдите объем прямоугольного параллелепипеда, диагональ которого равна 14 см, периметр основания —
20 см и периметр меньшей боковой грани — 32 см

Ответы на вопрос

Отвечает Грицаева Виктория.
Объем прямоугольного параллелепипеда равен V = a*b*c, где a,b и c - три его измерения. Нам дано: a+b= 20:2 =10см (1), b+c=32:2=16см(2). Из (1) b=10-a. Подстаим значение b в (2): 10-a+c=16, отсюда с=а+6. Теперь подставим эти значения в формулу диагонали прямоугольного параллелепипеда:
D² = a²+b²+c² и получим 14²=a²+(10-a)²+(a+6)² раскрываем скобки, приводим подобные и имеем квадратное уравнение: 3a²-8a-60=0, решая которое получаем а1=6см, а2 = -20 (не удовлетворяет условию задачи).
Итак, имеем: a=6см, b=4cм и c=12см. Тогда искомый объем параллелепипеда равен V=a*b*c =6*4*12 = 288см³.
Ответ: V=288см³


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili