Вопрос задан 22.05.2018 в 18:51. Предмет Геометрия. Спрашивает Меркитская Диляра.

Найдите площадь равнобедренной трапеции если ее основания и боковая сторона соответствена равны 11

см 17 см 5 см известны ее основания 8 см 2 см и угол 60 градусов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тихий Влад.

Опускаем из вершин, образующих малое основание, высоты на большее основание. Таким образом, мы поделили трапецию на прямоугольник и два одинаковых треугольника.
1) известны основания и боковая сторона.
Основание каждого треугольника равно 0,5(17 - 11) = 3
По теореме Пифагора высота трапеции будет равна: √(5² - 3²) = 4
Площадь трапеции S = 0,5 (17 + 11) · 4 = 56(см²)
2) известны основания и острый угол
Основание каждого треугольника равно 0,5 (8 - 2) = 3
Высота трапеции равна 3 · tg 60° = 3√3
Площадь трапеции S = 0.5 (8 + 2) · 3√3 = 15√3 (cм²)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос