
Вопрос задан 22.05.2018 в 12:12.
Предмет Геометрия.
Спрашивает Гулиева Жале.
Если в треугольнике ABC заданы длины сторон AB=6 BC=7 AC=8 , то sinB равен: И, по возможности,
решите эту задачу: Если в равнобедренном треугольнике угол при основании равен 35 градусов, то угол между боковой стороной и высотой, проведенной к другой боковой стороне, равен:

Ответы на вопрос

Отвечает Бергер Трофим.
1.
По теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos∠B
64 = 36 + 49 - 2·6·7·cos∠B
cos∠B = (36 + 49 - 64) / (2 · 6 · 7) = 21 / (2 · 6 · 7) = 1/4
Основное тригонометрическое тождество:
sin²∠B + cos²∠B = 1
sin∠B = √(1 - cos²∠B) = √(1 - 1/16) = √15/4
2.
СН - высота, проведенная к боковой стороне.
∠ВСН - искомый.
Углы при основании равнобедренного треугольника равны:
∠А = ∠С = 35°
∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
ΔНВС: ∠ВНС = 90°, ∠НВС = 70°, ⇒ ∠ВСН = 20°



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili