
Вопрос задан 21.05.2018 в 11:41.
Предмет Геометрия.
Спрашивает Царёв Вова.
1. Пусть AA₁, CC1₁ - высоты ΔABC (AB ≠ BC ≠ AC). K, L, M - середины сторон AB, BC и CA
соответственно. Доказать, что если ∠C₁M₁A₁ = ∠ABC, то C₁K = A₁L.

Ответы на вопрос

Отвечает Орлов Никита.
АА1 и СС1 - высоты. Значит точки А1 и С1 лежат на окружности с диаметром АС и центром в точке М. <C1МА1=<C1BA1 (дано).
Пусть <C1BA1=α. В прямоугольном треугольнике ВС1С угол ВСС1
равен 90-α. Но <C1MA1 - центральный и равен 2<BCC1, так как <BCC1 вписанный и опирается на ту же дугу, что и центральный. Итак, α=2*(90-α), отсюда α=180-2α и α=60°.
Значит <BCC1 и <BAA1 равны по 30°
В прямоугольных треугольниках ВС1С и ВА1А катеты, лежащие против углов 30°, равны половине гипотенузы.
Значит ВС1=(1/2)*ВС =ВL (так как L - середина ВС), а
ВА1=(1/2)*АВ=ВК (по такой же причине).
ВК+С1К=ВL (1)
BL-A1L=BK. (2)
Подставим (2) в (1):
BL-A1L+С1К=ВL. Или С1К=А1L.
Что и требовалось доказать.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili