
Вопрос задан 29.05.2019 в 06:57.
Предмет Геометрия.
Спрашивает Дружинин Михаил.
Напишите пожалуйста письменное доказательство теоремы:"Если медиана треугольника является его
биссектрисой,то этот треугольник равнобедренный." Умоляю❤

Ответы на вопрос

Отвечает Силаков Игорь.
Доказательство:
Рассмотрим ∆ AFC и ∆ BFC.
1) ∠AFC=∠BFC=90º (так как CF — высота треугольника ABC по условию).
2) AF=BF (так как CF — медиана треугольника ABC по условию).
3) Сторона CF — общая.
Следовательно, ∆ AFC = ∆ BFC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).
Рассмотрим ∆ AFC и ∆ BFC.
1) ∠AFC=∠BFC=90º (так как CF — высота треугольника ABC по условию).
2) AF=BF (так как CF — медиана треугольника ABC по условию).
3) Сторона CF — общая.
Следовательно, ∆ AFC = ∆ BFC (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili