Вопрос задан 21.05.2019 в 19:32. Предмет Геометрия. Спрашивает Давтян Лиля.

Помогите найти доказательство теоремы "окружность описанная около правильного многоугольника". уже

все обыскал. ну или если знаете напишите пожалуйста, буду очень признателен)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коновалов Дмитрий.
Теорема  Правильный многоугольник является вписанным в окружность и описанным около окружности, при этом центры этих окружностей совпадают.

Доказательство

Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O. Теорема доказана.




0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос