
Вопрос задан 16.05.2018 в 23:52.
Предмет Геометрия.
Спрашивает Манойло Игорь.
Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности
основания конуса выбраны точки A и B, делящиеокружность на две дуги, длины которых относятся как 1:3. Найдите площадьсечения конуса плоскостью ABP

Ответы на вопрос

Отвечает Долинская Екатерина.
Градусная мера дуги АВ будет равна 90 градусов, т.к. по условию две дуги относятся друг к другу как 1/3 ( 90/270). Отсюда находим сторону АВ в треугольнике АОВ по теореме Пифагора, АВ = =
. Далее находим высоту(h) треугольника АРВ, проведем перпендикуляр из точки Р к стороне АВ, пересекающаяся в точке С ( РС - h ), найдем её значение. РС =
.
Остюда по формуле S=ah/2 найдем площадь сечения. S=


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili