
Вопрос задан 18.05.2019 в 18:32.
Предмет Геометрия.
Спрашивает Svishcho Sasha.
Докажите, что у замкнутой ломаной расстояние между любыми двумя вершинами не больше половины длины
ломаной.

Ответы на вопрос

Отвечает Бака Емма.
АВСDЕА — замкнутая ломаная.
Расстояние между вершинами А и D считатем отрезком,который соединил концы ломаной,значит,согласно теореме о длине ломаной имеем: АD≤АВ + ВС + CD и АD≤АЕ + ED, Теперь складываем два неравенства.
2АD ≤ АВ + ВС + CD + DE + ЕА, АD ≤ 1/2 (АВ + ВС + CD + DE + ЕА).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili