Вопрос задан 18.05.2019 в 18:32. Предмет Геометрия. Спрашивает Svishcho Sasha.

Докажите, что у замкнутой ломаной расстояние между любыми двумя вершинами не больше половины длины

ломаной.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бака Емма.

АВСDЕА — замкнутая ломаная.

Расстояние между  вершинами А и D  считатем отрезком,который соединил концы ломаной,значит,согласно теореме о длине ломаной имеем: АD≤АВ + ВС + CD и АD≤АЕ + ED, Теперь складываем два неравенства.

2АD ≤ АВ + ВС + CD + DE + ЕА, АD ≤ 1/2 (АВ + ВС + CD + DE + ЕА).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос