Вопрос задан 16.05.2019 в 18:51. Предмет Геометрия. Спрашивает Никонова Екатерина.

В равнобедренной трапеции ABCD боковые стороны равны меньшему основанию BC. К диагоналям трапеции

провели перпендикуляры BH и CE. Найдите площадь четырехугольника BCEH, если площадь трапеции ABCD равна 36
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Умирзаков Фархат.
Трапеция АВСД, АВ=ВС=СД, треугольники АВС и ВСД равнобедренные, ВН и СЕ - медианы, высоты, биссектрисы, АН=НС, ВЕ=ЕД, МК - средняя линия трапеции=(АД+ВС)/2, МН-средняя линия треугольника АВС=1/2ВС, КЕ- средняя линия треугольника ВСД=1/2ВС, НЕ=МК-МН-ЕК=(АД+ВС)/2 -1/2ВС-1/2ВС=(АД-ВС)/2, средняя линия делит высоту ОР (проведена через пересечение диагоналей ) на равные части ОТ=ТР (точка Т пересечение НЕ и ОР), площадь трапеции АВСД=(АД+ВС)*ОР/2=36, ОР=72/(АД+ВС), ОТ=1/2ОР=72/2*(АД+ВС)=36/(АД+ВС), площадь трапецииВНЕС=(НЕ+ВС)*ОТ/2=((АД-ВС)/2 + ВС)/2*(36/(АД+ВС)=((АД-ВС+2ВС)/4)*(36/(АД+ВС)=(АД+ВС)/4 *(36/(АД+ВС))=36/4=9
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос