
Вопрос задан 16.05.2018 в 05:35.
Предмет Геометрия.
Спрашивает Пожиганова Алёнка.
Найти площадь равнобедренного треугольника с углом при основании 30 градусов ,если радиус вписанной
в него окружности равен r

Ответы на вопрос

Отвечает Бернгард Валерия.
Центр вписанной окружности равнобедренного треугольника лежит на пересечении биссектрис.
Обозначим угол при основании - α;
Из Δ АОН:
АН=r/tg(α/2);
tg(α/2)=sinα/(1+cosα);
AH=r*(1+cosα)/sinα)=r*(2+√3).
Из Δ АВН:
ВН=tgα*AH=r*(2+√3)/√3=r*(2+√3)/√3.
Площадь - АН*ВН=r*(2+√3)*(r*(2+√3)/√3)=r²(2+√3)²/√3.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili