
Вопрос задан 14.05.2019 в 02:59.
Предмет Геометрия.
Спрашивает Фастовец Лера.
Круговой сектор радиуса R с центральным углом 60 градусов вращается вокруг одного из радиусов,
образующих этот угол. Найдите объем тела вращения. Желательно предоставьте решение на листе. Буду благодарен.

Ответы на вопрос

Отвечает Габбасов Владик.
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA.
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili