Вопрос задан 08.05.2019 в 17:35. Предмет Геометрия. Спрашивает Бородулин Вадим.

Периметр равнобедренного треугольника равен 23 см. Найдите его стороны, если основание меньше

боковой стороны на 4 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зубковская Татьяна.
23- это 2х+(х+4)
23-4= 19- это если бы это был равносторонний
19:3=6 1/3 - это боковая сторона
6 1/3+4= 10 1/3 - это основание
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобится использовать свойства равнобедренного треугольника.

Определение и свойства равнобедренного треугольника

Равнобедренный треугольник - это треугольник, у которого две стороны равны. В таком треугольнике углы при основании (двух равных сторон) также равны.

Решение задачи

Пусть x - длина основания треугольника, а y - длина боковой стороны. Согласно условию, основание меньше боковой стороны на 4 см, поэтому мы можем записать следующее уравнение:

x = y - 4

Периметр равнобедренного треугольника равен сумме длин всех его сторон. В нашем случае, периметр равен 23 см, поэтому мы можем записать следующее уравнение:

x + y + y = 23

Учитывая первое уравнение, мы можем переписать второе уравнение, заменив x на y - 4:

y - 4 + y + y = 23

Решая это уравнение, мы найдем значение y:

3y - 4 = 23 3y = 27 y = 9

Теперь, когда мы нашли значение y, мы можем найти значение x, используя первое уравнение:

x = y - 4 x = 9 - 4 x = 5

Таким образом, стороны равнобедренного треугольника равны 5 см, 9 см и 9 см (основание, боковая сторона, боковая сторона соответственно).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос