Вопрос задан 08.05.2019 в 08:28. Предмет Геометрия. Спрашивает Мокрова Маша.

На стороне BC треугольника ABC отметили точку К так,что угол САК равен углу АВС,ВК=12 см,КС=4см.

Найдите сторону АС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиева Айзада.
Применен признак подобия треугольников по двум углам
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся теоремой синусов.

Дано: BC - сторона треугольника ABC К - точка на стороне BC Угол САК равен углу АВС ВК = 12 см КС = 4 см

Нам нужно найти сторону АС.

Шаг 1: Найдем угол ACB

Угол ACB является дополнительным к углу САК. Поскольку угол САК равен углу АВС, то угол ACB также равен углу АВС.

Шаг 2: Найдем угол АКС

Угол АКС является дополнительным к углу КСА. Поскольку угол КСА равен углу АВС, то угол АКС также равен углу АВС.

Шаг 3: Найдем угол КАС

Угол КАС является внутренним углом треугольника КАС. Сумма внутренних углов треугольника равна 180 градусам. Таким образом, угол КАС равен 180 - угол АКС - угол САК.

Шаг 4: Применим теорему синусов

Теорема синусов устанавливает соотношение между сторонами и соответствующими им углами треугольника. В нашем случае, мы можем записать:

sin(КАС) / ВК = sin(КСА) / АС

Поскольку угол КСА равен углу АВС, а угол КАС мы нашли в предыдущем шаге, мы можем записать:

sin(АВС) / ВК = sin(АВС) / АС

Шаг 5: Решаем уравнение

Перепишем уравнение и решим его относительно АС:

АС = ВК * sin(АВС) / sin(АВС) АС = ВК

Таким образом, сторона АС равна 12 см.

Итак, сторона АС равна 12 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос