Вопрос задан 07.05.2019 в 21:33. Предмет Геометрия. Спрашивает Волкович Тёма.

ABCD -квадрат , BD - бессектрисса ABCD, надо найти угол CBD и BDC

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Копылова Алёна.
СBD=45* и BDC=45* так как все углы квадрата равны 90*, а биссектриса делит угол пополам то CBD=45*, а BDC= 45* потому что сумма углов треугольника= 180* из этого следует BDC=180*-CBD-BCD= 180*-45*-90*= 45*
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам с решением геометрической задачи. Вот подробный ответ:

Дано: ABCD - квадрат, BD - биссектриса ABCD.

Найти: угол CBD и BDC.

Решение:

1. Поскольку ABCD - квадрат, то все его углы равны 90°, а все его стороны равны между собой. Обозначим сторону квадрата как a. 2. Поскольку BD - биссектриса угла ABC, то она делит этот угол пополам. Значит, угол CBD равен половине угла ABC, то есть 90° / 2 = 45°. 3. Поскольку сумма углов треугольника равна 180°, то угол BDC равен 180° - CBD - BCD. Подставляя значения углов CBD и BCD, получаем: BDC = 180° - 45° - 90° = 45°. 4. Таким образом, мы нашли, что угол CBD и BDC равны 45° каждый.

Ответ: CBD = BDC = 45°.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос