Вопрос задан 07.05.2019 в 07:19. Предмет Геометрия. Спрашивает Дарменов Дархан.

Стороны треугольника равны 5; 7 и 10. В каком отношении, считая от вершины треугольника, точка

пересечения биссектрис делит биссектрису большего угла?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Евстафьев Алексей.

Пусть в треугольнике ABC AB=10, BC=7, AC=5, AA1, BB1, CC1 - биссектрисы, I - их точка пересечения. Нужно найти отношение CI/IC1 (C - больший угол, так как он лежит против большей стороны AB). Найдем отрезок CC1. Он равен 10*5/12 (по свойству биссектрисы, AC/AC1=BC/BC1, или 5/AC1=7/BC1, тогда BC1/AC1=7/5, а BC1+AC1=AB=10). Рассмотрим треугольник ACC1. CI/IC1=AC/AC1=5/(50/12)=60/50=6/5. Таким образом, точка пересечения биссектрис делит биссектрису в отношении 6:5, считая от вершины.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Отношение, в котором точка пересечения биссектрис делит биссектрису большего угла

Для решения этой задачи нам понадобится использовать свойство биссектрис треугольника. Биссектриса треугольника делит противоположную ей сторону в отношении

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос