Вопрос задан 07.05.2019 в 07:13. Предмет Геометрия. Спрашивает Доровский Алексей.

АВСД параллелограмм .АК-биссектриса ,ВК-15см,КС-9см.найти периметр

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ананьев Виктор.
За формулою 2*(a+b)
2(9+15)=48 або 9+15+15+9=48
Р=48

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Perimeter of ABCD Parallelogram

To find the perimeter of the ABCD parallelogram, we need to know the lengths of its sides. From the given information, we know that VK is 15 cm and KS is 9 cm. However, we don't have the lengths of the other sides.

To calculate the perimeter, we need to use the fact that opposite sides of a parallelogram are equal in length. Therefore, if we can find the lengths of the other two sides, we can add them all together to get the perimeter.

Let's denote the length of side AB as a and the length of side BC as b. Since AB and BC are opposite sides of the parallelogram, they must be equal in length. Therefore, we can say that a = b.

Now, we can use the given information to find the lengths of sides AB and BC.

Calculation

From the given information, we know that VK is 15 cm and KS is 9 cm. Since AK is the bisector of angle A, we can use the angle bisector theorem to find the lengths of AK and KC.

According to the angle bisector theorem, the ratio of the lengths of the segments formed by an angle bisector is equal to the ratio of the lengths of the opposite sides. In this case, we have:

AK/KC = AV/KS

Substituting the given values, we have:

AK/KC = 15/9

To find the lengths of AK and KC, we can set up a proportion:

AK/9 = 15/KC

Cross-multiplying, we get:

AK * KC = 9 * 15

AK * KC = 135

Since AK = KC (as AK is the bisector of angle A), we can solve for AK and KC by finding the square root of 135:

AK = KC = √135

Now that we have the lengths of AK and KC, we can find the lengths of AB and BC using the fact that AB = AK + KB and BC = KC + KB.

AB = AK + KB = √135 + KB

BC = KC + KB = √135 + KB

Since AB = BC, we can set up an equation:

√135 + KB = √135 + KB

Simplifying, we get:

KB = KB

This means that the length of KB can be any value, as long as it is equal to itself. Therefore, we cannot determine the lengths of AB and BC based on the given information.

Without the lengths of AB and BC, we cannot calculate the perimeter of the parallelogram.

Please provide the lengths of AB and BC or any additional information to proceed with the calculation.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос