Вопрос задан 01.05.2019 в 01:03. Предмет Геометрия. Спрашивает Потапов Иван.

В прямоугольном треугольнике один катет равен 10 дм,а гипотенуза равна 26 дм найдите второй катет

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Князь Влад.
По теореме Пифагора:
(неизвестный катет взяла за х)
х²=26²-10²=676-100=576; х=24
Ответ: Неизвестный катет равен 24 см
0 0
Отвечает Туржанова Аля.
...........................
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи мы можем использовать теорему Пифагора, которая устанавливает связь между сторонами прямоугольного треугольника. Теорема Пифагора гласит: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Мы знаем, что один катет равен 10 дм (для удобства переведем его в сантиметры, получим 100 см), а гипотенуза равна 26 дм (260 см).

Поэтому, применяя теорему Пифагора, мы можем записать:

гипотенуза^2 = катет^2 + катет^2

260^2 = 100^2 + катет^2

67600 = 10000 + катет^2

катет^2 = 67600 - 10000

катет^2 = 57600

катет = √57600

катет ≈ 240

Таким образом, второй катет прямоугольного треугольника равен примерно 240 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос