
Вопрос задан 10.05.2018 в 20:50.
Предмет Геометрия.
Спрашивает Obvintsev Sema.
В треугольнике АВС АВ=ВС. на медиане ВЕ отмечена точка М, а на сторонах АВ и ВС точки РиК . точки
Р,М,К не лежат на прямой. известно угол ВМР=углуВМК . ДОКАЖИТЕ: углыВРМ и ВКМ равны и прямые РК И ВМ взаимно перпендикулярны

Ответы на вопрос

Отвечает Гайдаренко Артем.
Так как по условию Δ ABC равнобедренный (AB=AC) ,то медиана BE является так же биссектрисой и углы ABC и EBC равны ,а стало быть и ∠ PBM=∠ KBM .По стороне BM которая является общей для треугольников BMP и BMK и прилежащим к ней углам они равны ,а стало быть и все их углы соответственно равны .Из всего этого следует ,что PBKM - ромб ,а значит его диагонали ,которые лежат на прямых PK и BM пересекаются под прямым углом или можно сказать ,что они взаимно перпендикулярны .


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili