Вопрос задан 10.05.2018 в 20:50. Предмет Геометрия. Спрашивает Obvintsev Sema.

В треугольнике АВС АВ=ВС. на медиане ВЕ отмечена точка М, а на сторонах АВ и ВС точки РиК . точки

Р,М,К не лежат на прямой. известно угол ВМР=углуВМК . ДОКАЖИТЕ: углыВРМ и ВКМ равны и прямые РК И ВМ взаимно перпендикулярны
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гайдаренко Артем.

Так как по условию Δ ABC равнобедренный (AB=AC) ,то медиана BE является так же биссектрисой и углы ABC и EBC равны ,а стало быть и ∠ PBM=∠ KBM .По стороне BM которая является общей для треугольников BMP и BMK и прилежащим к ней углам они равны ,а стало быть и все их углы соответственно равны .Из всего этого следует ,что PBKM - ромб ,а значит его диагонали ,которые лежат на прямых PK и BM пересекаются под прямым углом или можно сказать ,что они взаимно перпендикулярны .

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос