
Вопрос задан 16.04.2019 в 21:43.
Предмет Геометрия.
Спрашивает Гатина Элина.
прямая пересекает стороны ав и ас треугольника авс в точках р и м соответственно. найдите отношение
площади треугольника арм к площади четырехугольника мсвр если ар:рв=5:4,ам:мс=3:5. с рисунком

Ответы на вопрос

Отвечает Руденко Данил.
Самое простое: пусть АВ=х, АС=у, тогда АР=(5/9)*х, АМ=(3/8)*у. Площадь треугольника АВС=0,5*х*у*sin(A). Площадь треугольника АМР=0,5*(5/9)*х*(3/8)*у=0,5*х*у*sin(A)*(5/24). Отношение площадей треугольников 5/24, а площади меньшего треугольника к площади четырехугольника 5/(24-5)=5/19.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili