
Вопрос задан 16.04.2019 в 14:54.
Предмет Геометрия.
Спрашивает Константинов Егор.
докажите что четырехугольник MNKP заданный координатами своих вершин M(2;2) N(5;3) K(6;6) p(3;5)
является ромбом и вычислите его площадь?

Ответы на вопрос

Отвечает Смолова Елена.
1. По правилу определения ромба мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
Вектор Nk=(6-5;6-3)=(1;3)
вектор Kp=(-3;-1)
ВЕКтор РМ=(1;3)
Теперь объединяем это фигурной скобкой и пишем , следовательно MN=NK=KP=PM, а из этого следуют что четырёх угольник MNPK - квадрат, по определению.
2. По свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(3;3)
NP=(-2;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili