Вопрос задан 10.05.2018 в 12:20. Предмет Геометрия. Спрашивает Амирханов Магомед.

В треугольнике АВС известны длины сторон АВ=32 АС=64, точка О-центр окружности, описанной около

треугольника АВС. Прямая ВД, перпендикулярная прямой АО, пересекает сторону АС в точке Д. Найдите СД
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаров Никита.

Если прямая АО пересекает окружность в точке E, то AE - диаметр, и значит ABE - прямоугольный треугольник. При этом BD лежит на его высоте, проведенной к гипотенузе. Значит ∠ABD=∠AEB=∠ACB. Последнее равенство здесь верно т.к. углы AEB и ACB вписанные в окружность и опираются на одну дугу AB.
Итак, треугольники ABD и ACB подобны по двум углам. Отсюда AD/AB=AB/AC, т.е. AD/32=32/64, откуда AD=16 и CD=AC-AD=64-16=48.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос