Вопрос задан 10.05.2018 в 06:42. Предмет Геометрия. Спрашивает Радченко Дарья.

Найдите площадь ромба со стороной 10 см, если разность его диагоналей равна 4 см

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Валиков Иван.

Пусть одна диагональ равна х см, а другая (4+х)см. Площадь ромба находится как половина произведения его диагоналей. Получим: 1/2*х(4 + х)=(x^2+4x)/2. Теперь найдем х. Диагонали ромба перпендикулярны и точкой пересечения делится пополам (пересекаются в точке О). Рассмотрим прямоугольный треугольник АОВ. 
Один катет будет равен половине диагонали, то есть х/2, а второй катет будет равен половине другой диагонали, то есть 2+х/2. Гипотенуза равна 10 см (сторона ромба).

Составим уравнение по теореме Пифагора и решим уравнение:
(2+х/2)^2+(х/2)^2=100
4+2х+х^2/4+х^2/4=100 |*4
16+2х+х^2+x^2=400
2x^2+8x+16=400 |:2
x^2+4x+8=200
x^2+4x-192=0
Решая квадратное уравнение, мы получим корни: 12 и -16 (не удовлетворяет условию задачи).
То есть мы нашли одну диагональ и она равна 12 см.
Подставим наше значение в формулу и найдем площадь ромба: (144+48)/2=96 см^2
Ответ: площадь ромба равна 96 см^2


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос