
Вопрос задан 03.04.2019 в 11:19.
Предмет Геометрия.
Спрашивает Аманоллина Айым.
Докажите, что площади прямоугольников ABCD и AKDL равны (см. рис.).



Ответы на вопрос

Отвечает Мукомел София.
Треугольник ADK - это половина прямоугольника AKDL, т.к. AD - его диагональ.
S(ADK) = S(ABCD)-S(ABK)-S(CDK)
S(ABCD) = AB*BC
S(ABK) = AB*BK/2
S(CDK) = CD*CK/2 = AB*CK/2
S(ADK) = AB*BC-AB*BK/2-AB-CK/2 = AB*BC-(AB*BK+AB*CK)/2 = AB*BC-AB*(BK+KC)/2
По условию BK+KC = BC. Тогда
S(ADK) = AB*BC-AB*BC/2 = AB*BC/2
Отсюда
S(AKDL) = 2*S(ADK) = 2*AB*BC/2 = AB*BC = S(ABCD)
Что и требовалось доказать.
S(ADK) = S(ABCD)-S(ABK)-S(CDK)
S(ABCD) = AB*BC
S(ABK) = AB*BK/2
S(CDK) = CD*CK/2 = AB*CK/2
S(ADK) = AB*BC-AB*BK/2-AB-CK/2 = AB*BC-(AB*BK+AB*CK)/2 = AB*BC-AB*(BK+KC)/2
По условию BK+KC = BC. Тогда
S(ADK) = AB*BC-AB*BC/2 = AB*BC/2
Отсюда
S(AKDL) = 2*S(ADK) = 2*AB*BC/2 = AB*BC = S(ABCD)
Что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili