Вопрос задан 21.03.2019 в 10:02. Предмет Геометрия. Спрашивает Борозна Настя.

Два круга радиусами 6 см пересекаются по общей хорде длиной 6 корней из 3 см.Найдите площадь общей

части кругов.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Свирин Юра.
Найдём расстояние между центрами кругов.
Пусть h - половина хорды между точками пересечения
a - расстояние от центра круга до хорды
h = 6√3/2 = 3√3
r² = a² + h²
6² = a² + 9*3
36 = a² + 27
a² = 9
a = 3
а расстояние между центрами кругов равно их радиусу
2a = r
площадь фигуры пересечения будет равна удвоенному красному сектору.
А красный - в свою очередь равен круговому сектору минус синий треугольник
Половинка угла кругового сектора составит
sin(α/2) = 3√3/6 = √3/2
α/a = arccos (√3/2) = π/3
α = 2π/3
Площадь кругового сектора
S₁ = α*r²/2 = 2π/3*6²/2 = 12π
Площадь синего треугольника
S₂ = 1/2*r²*sin(2π/3) = 1/2*36*√3/2 = 9√3
Площадь одного красного сектора
S₃ = S₁ - S₂ = 12π - 9√3
И площадь фигуры пересечения двух кругов
S₄ = 2*S₃ = 24π - 18√3 ≈ 44,2247
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос