Вопрос задан 20.03.2019 в 10:25. Предмет Геометрия. Спрашивает Пасічник Максим.

Сторона основания правильной четырёхугольной пирамиды равна 14см, а боковая грань наклонена к

плоскости основания под углом 45(градусов).Найти площадь поверхности пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новоженова Ангелина.

Пусть есть пирамида SABCD.  Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок  - катет, апофема – гипотенуза , угол 45°,  апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ;   Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос