
Вопрос задан 17.03.2019 в 23:04.
Предмет Геометрия.
Спрашивает Калинникова Елизавета.
Через точки E и F , принадлежащие сторонам АВ и ВС треугольника АВС соответственно, проведена
прямая EF , параллельная стороне AC . Найдите длину BC , если EF =10, AC =15 и FC =9.

Ответы на вопрос

Отвечает Калюжная Карина.
EF параллельна АС, следовательно,
углы при основаниях треугольникоа EBF и ABC равны как углы при параллельных прямых и секущей.
Отсюда эти треугольники подобны по 3-му признаку подобия, и коэффициент их подобия
k=EF:AC=10/15
BF:BC=10:15
Пусть ВF=x, тогда ВС=9+х
х:(9+х)=10:15
15х=90+10
5х=90
х=18
ВС=BF+FC=18+9=27
углы при основаниях треугольникоа EBF и ABC равны как углы при параллельных прямых и секущей.
Отсюда эти треугольники подобны по 3-му признаку подобия, и коэффициент их подобия
k=EF:AC=10/15
BF:BC=10:15
Пусть ВF=x, тогда ВС=9+х
х:(9+х)=10:15
15х=90+10
5х=90
х=18
ВС=BF+FC=18+9=27


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili