
Вопрос задан 15.03.2019 в 15:03.
Предмет Геометрия.
Спрашивает Селюк Алена.
На рисунке 29 ABCD - ромб, AE перпендикулярна ВС, AF перпендикулярна CD. Докажите,что СЕ=CF.


Ответы на вопрос

Отвечает Крупенёв Никита.
Дано: ABCD - ромб, AE ⊥ ВС, AF ⊥ CD.
Доказать:СЕ=CF
ΔAEC и ΔAFC
AC - общая сторона
∠AEC = ∠AFC = 90° по условию
∠ACE = ∠ACF - диагональ ромба CA является биссектрисой ∠ACD
⇒ ΔAEС = ΔAFС по равным гипотенузам и острым углам
⇒ СE = СF
Доказать:СЕ=CF
ΔAEC и ΔAFC
AC - общая сторона
∠AEC = ∠AFC = 90° по условию
∠ACE = ∠ACF - диагональ ромба CA является биссектрисой ∠ACD
⇒ ΔAEС = ΔAFС по равным гипотенузам и острым углам
⇒ СE = СF


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili