Вопрос задан 28.02.2019 в 06:41. Предмет Геометрия. Спрашивает Мамонов Артем.

В равнобедренном треугольнике угол, противолежащий основанию, равен 120, а биссектриса, проведенная

к основанию равна 8. найти боковую сторону
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Комененко Дмитрий.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является и высотой и медианой... Исходя из этого в прямоугольном треугольнике, образованном боковой стороной равнобедренного треугольника (гипотенуза) и его высотой (биссектрисой), угол при основании равен 30°, а против него - катет (биссектриса-высота) = 8. Значит боковая сторона нашего равнобедренного треугольника(гипотенуза) равна 2*8=16.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть в равнобедренном треугольнике ABC угол ACB, противолежащий основанию AB, равен 120 градусам, а биссектриса BD, проведенная к основанию AB, равна 8.

Так как треугольник ABC - равнобедренный, то сторона AC = BC.

Треугольник ABD - прямоугольный, так как BD - биссектриса угла ABC. Тогда применяя теорему Пифагора, мы можем найти сторону AB.

Выразим сторону AB через стороны AD и BD:

AB^2 = AD^2 + BD^2 (1)

Так как угол BDA является прямым, то по теореме синусов для треугольника ABD:

AD / BD = sin(ADB) / sin(BDA)

sin(ADB) = sin(180 - 120) = sin(60) = √(3) / 2

sin(BDA) = sin(180 - 120) = sin(60) = √(3) / 2

Подставляем полученные значения в формулу:

AD / BD = (√(3) / 2) / (√(3) / 2)

AD / BD = 1

AD = BD

Таким образом, стороны AD и BD равны между собой.

Подставляя значение BD = 8 в уравнение (1), получим:

AB^2 = AD^2 + 8^2

AB^2 = AD^2 + 64

AB^2 = 2*AD^2

AB = √(2*AD^2) = √(2*8^2) = 8√2

Таким образом, боковая сторона равнобедренного треугольника ABC равна 8√2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос