Вопрос задан 28.02.2019 в 02:25. Предмет Геометрия. Спрашивает Воробьёва Ксения.

Найдите расстояние между высотой правильного тетраэдра,ребро которого равно 10 корней из 3, и

средней линией его боковой грани Я нашла высоту, она равна 15 Ответ должен получиться:2,5 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гиммлер Наташка.

Расстояние от центра описанной около основания этого тетраэдра окружности до грани - перпендикуляр к этой грани.


На рисунке - это отрезок ОК.


Центр описанной около правильного треугольника окружности ( а грани правильного тетраэдра - правильные треугольники) лежит на пересечении высот треугольника на расстоянии одной трети высоты от стороны.


Найдем высоту треугольника по формуле
h=a√3):2, а так как а=1,то 
h= √3):2


ОМ=√3):2):3=√3):6


Так как все грани правильного тетраэдра равны, 
SM равна h=√3):2


Расстояние КО будем находить из прямоугольного треугольника SОМ
Применим теорему:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.


Здесь этот катет - ОМ

 

ОМ²=МК·SM


(√3):6)²=МК·(√3):2)

 

МК=3/36:(√3):2)=6/36):√3=1/6√3

 

ОК²=МО²-КМ²

ОК²=3/36 -1/108=9/108-1/108=8/108=2/27=6/81


ОК =√(6/81)=√6):9

  Вложения
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос