Вопрос задан 25.02.2019 в 15:04. Предмет Геометрия. Спрашивает Чернова Анастасия.

У прямокутну трапецію вписано коло. Точка дотику ділить більшу бічну сторону на відрізки 4 і 25.

Знайдіть площу трапеції.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Богданчикова Карина.
См. рисунок.
KA=AF, KB=BE, EC=CG, GD=DF - по свойству касательных.
KA=AF=KB=BE=х, EC=CG=4, GD=DF=25.
СН- высота, СН=АВ=2х, HD=25-4=21
Из прямоугольного треугольника CDH, по т. Пифагора СН=20, х=20:2=10
Sabcd=((BC+AD)/2)*CH=((14+35)/2)*20=490
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі можна скористатися властивостями вписаного кола та прямокутної трапеції.

1. Знаходження радіуса вписаного кола: Радіус вписаного кола трапеції можна знайти за допомогою відомих відношень. Якщо точка дотику ділить більшу бічну сторону трапеції на відрізки 4 і 25, то ми можемо сказати, що відношення відрізків становить 4:25. Тобто, якщо позначити довжину більшої бічної сторони через \(a\), то:

\[ \frac{4}{25}a + \frac{25}{25}a = a \] Отже, довжина меншої частини більшої бічної сторони дорівнює \( \frac{4}{29}a \). Це є довжина відрізка, який займає точка дотику.

Тепер відомо, що відрізок, що займає точка дотику, становить радіус вписаного кола. Таким чином, радіус позначимо як \( r \), і отримаємо:

\[ r = \frac{4}{29}a \]

2. Знаходження площі трапеції: Площа трапеції обчислюється за формулою:

\[ S = \frac{a + b}{2} \cdot h \]

Де: - \( a \) і \( b \) - довжини основ трапеції (меншої і більшої), - \( h \) - висота трапеції.

Висоту трапеції можна знайти за допомогою теореми Піфагора, використовуючи радіус вписаного кола:

\[ h = \sqrt{a^2 - r^2} \]

Підставимо значення \( r \) у цю формулу.

3. Знаходження площі трапеції: Після знаходження висоти трапеції, підставимо всі відомі значення у формулу для площі трапеції:

\[ S = \frac{a + b}{2} \cdot h \]

Підставимо \( h \), якщо висоту трапеції знайдено за допомогою радіуса вписаного кола.

Важливо врахувати, що для повного розв'язку потрібно знати значення більшої бази трапеції \( a \). Якщо це значення відомо, ви зможете обчислити площу трапеції, використовуючи вищезазначені формули.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос