Вопрос задан 23.02.2019 в 16:04. Предмет Геометрия. Спрашивает Мудрых Полина.

Диагонали трапеции равны 5 и 12, а основания 3 и 10. найдите углы между диагоналями этой трапции

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пуримов Дима.

Решение - смотреть в приложении.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the angles between the diagonals of a trapezoid

To find the angles between the diagonals of a trapezoid, we can use the properties of the trapezoid and the given information about its diagonals and bases.

Given: - Diagonals: 5 and 12 - Bases: 3 and 10

Let's denote the trapezoid as ABCD, with AB as the shorter base (3 units) and CD as the longer base (10 units). The diagonals of the trapezoid intersect at point M.

To find the angles between the diagonals, we need to find the measures of angles A and B.

Finding angle A

To find angle A, we can use the fact that the sum of the angles in a triangle is 180 degrees. We can consider triangle ABD, where AD is the diagonal of length 5, BD is the longer base of length 10, and AB is the shorter base of length 3.

Using the given information, we can find the length of segment AM by subtracting the length of segment MD (8 units) from the length of diagonal AD (5 units). Therefore, AM = AD - MD = 5 - 8 = -3 units. However, a negative length is not possible, so we can conclude that point M lies outside the trapezoid.

Since point M lies outside the trapezoid, we cannot determine angle A using the given information.

Finding angle B

To find angle B, we can use the fact that the sum of the angles in a triangle is 180 degrees. We can consider triangle BCD, where BC is the diagonal of length 12, CD is the longer base of length 10, and BD is the shorter base of length 3.

Using the given information, we can find the length of segment BM by subtracting the length of segment CM (14 units) from the length of diagonal BC (12 units). Therefore, BM = BC - CM = 12 - 14 = -2 units. However, a negative length is not possible, so we can conclude that point M lies outside the trapezoid.

Since point M lies outside the trapezoid, we cannot determine angle B using the given information.

Conclusion

Based on the given information, we cannot determine the angles between the diagonals of the trapezoid because the point of intersection of the diagonals (point M) lies outside the trapezoid.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос