Вопрос задан 30.04.2018 в 08:07. Предмет Геометрия. Спрашивает Юришинец Илья.

Геометрия 11 класс.Точка Т - середина ребра АА1 куба ABCDA1B1C1D1, длина ребра которого равна 6 см.

Постройте сечение куба плоскостью B1CT и вычислите его периметр.Помогите решить пожалуйста.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Савенков Кирилл.

A - длина ребра (=6)

Плоскость сечения пересекает параллельные грани куба, линии пересечения параллельны, B1C||TF. B1C||A1D => TF||A1D.
B1C=A1D=a√2 (диагонали квадратов со стороной a).
TF=A1D/2=a√2/2 (средняя линия в треугольнике AA1D).
F - середина AD, B1T=CF =a√5/2 (гипотенузы в треугольниках с катетами a и a/2).

P(B1CFT)= a√2 +a√2/2 +2*a√5/2 =a(3√2/2 +√5) =9√2 +6√5 =26,14


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос