
Вопрос задан 17.02.2019 в 18:20.
Предмет Геометрия.
Спрашивает Лызанець Миша.
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны которого
равны а*корень из 2 и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью АВС₁ и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда.

Ответы на вопрос

Отвечает Воронцов Никита.
Вот параллелограмм - основание параллелепипеда на рисунке.
а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный.
Высота параллелепипеда H = AA1 = h = a.
б) Диагональная плоскость ABC1D1 лежит под углом α к основанию
tg α = H / AD = a / (2a) = 1/2
α = arctg(1/2)
в) Площадь боковой поверхности параллелепипеда
S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2)
г) Площадь основания
S(осн) = AD*h = 2a*a = 2a^2
Полная площадь поверхности
S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)
а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный.
Высота параллелепипеда H = AA1 = h = a.
б) Диагональная плоскость ABC1D1 лежит под углом α к основанию
tg α = H / AD = a / (2a) = 1/2
α = arctg(1/2)
в) Площадь боковой поверхности параллелепипеда
S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2)
г) Площадь основания
S(осн) = AD*h = 2a*a = 2a^2
Полная площадь поверхности
S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Дано: Прямой параллелепипед ABCDA₁B₁C₁D₁, основанием которого является параллелограмм ABCD. Стороны параллелограмма равны a√2 и 2a, а острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма.
Найти: а) Меньшую высоту параллелограмма; б) Угол между плоскостью АВС₁ и плоскостью основания; в) Площадь боковой поверхности параллелепипеда; г) Площадь поверхности параллелепипеда.
Решение:
а) Меньшая высота параллелограмма:
Меньшая высота параллелограмма равна высоте параллелепипеда

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili