Вопрос задан 14.02.2019 в 23:43. Предмет Геометрия. Спрашивает Поночевный Роман.

В треугольнике АВС известно,что угол С=90 градусов,угол А=30 градусов,CD-высота,BD=7см.Найдите

гипотенузу АВ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гавриленкова Юля.
1) 180 - 90 - 30 = 60
2) 180 - 60 - 90 = 30
3) 7 * 2 = 14 (По теореме 30 градусов)
4) 14 * 2 = 28 (По теореме 30 градусов)
Ответ.DC = 28.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать теорему Пифагора, так как у нас есть прямоугольный треугольник.

Сначала найдем длину стороны BC, которая является катетом. Так как угол A = 30 градусов, а угол C = 90 градусов, то угол B = 60 градусов. Теперь мы можем использовать тригонометрические функции для нахождения стороны BC.

Мы знаем, что tg(угол B) = BC/BD, где tg - тангенс угла. Подставляя известные значения, получаем tg(60 градусов) = BC/7 см. Решая уравнение, получаем BC = 7 * tg(60 градусов) ≈ 7 * 1.732 ≈ 12.124 см.

Теперь мы можем найти гипотенузу AB, используя теорему Пифагора: AB^2 = BC^2 + AC^2. Так как у нас прямоугольный треугольник, то AC = CD. Так как угол A = 30 градусов, то треугольник ACD - равнобедренный, и AC = AD. Таким образом, AC = AD = BD = 7 см.

Подставляя известные значения в уравнение, получаем AB^2 = 12.124^2 + 7^2 ≈ 147.04 + 49 ≈ 196.04. Извлекая квадратный корень, получаем AB ≈ √196.04 ≈ 14 см.

Таким образом, гипотенуза AB треугольника ABC равна примерно 14 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос