
Вопрос задан 28.04.2018 в 05:32.
Предмет Геометрия.
Спрашивает Бубнова Даша.
В остроугольном треугольнике ABC проведены высота BH и медиана AM. Известно, что ∠MCA=70∘,
∠MAC=35∘, BC=4. Найдите длину отрезка AH.

Ответы на вопрос

Отвечает Северин Сергей.
Медиана, проведенная к гипотенузе, равна половине гипотенузы, значит в треугольнике BHC HM-медиана и равна половине гипотенузы BC, т.е. 2. ∠MAC = 35. Тогда ∠MHC = ∠ MCH = ∠MCA =70По теореме о внешнем угле треугольника ∠AMH = ∠MHC – ∠MAC=70-35=35. Значит, треугольник AMH – также равнобедренный. Следовательно, AH = HM = 2


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili