Вопрос задан 05.02.2019 в 12:48. Предмет Геометрия. Спрашивает Уколова Лера.

Дан равносторонний треугольник со стороной 6 корней из 3 см. из его центра О проведен перпендикуляр

ОМ, длина которого 8 см. Найти расстояние от т.М до: а)вершин треугольника б)сторон среугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адаменко Анна.

MABC - правильная треугольная пирамида, так как ABC - правильный треугольник, а MO - высота, основание которой является центром этого треугольника. Чтобы найти длину отрезка MA, найдем длину отрезка OA. Заметим, что O - точка пересечения медиан, и через нее проходит высота AH, которая также является медианой. Тогда она делится точкой O  в отношении 2:1, считая от вершины. Высота равностороннего треугольника равна a*sqrt(3)/2, где a - сторона треугольника, в нашем случае высота будет равна 6sqrt(3)*sqrt(3)/2=9. Отрезок AO составляет 2/3 высоты, тогда он равен 6. Треугольник AMO прямоугольный, так как OM перпендикулярно (ABC), и OM перпендикулярно AO. Нам известны 2 его катета, они равны 6 и 8, тогда гипотенуза AM равна 10, а расстояния от M до всех вершин равны.

 

Чтобы найти расстояние от M до сторон треугольника, найдем расстояние от M до любой стороны, например, AB. ABM - боковая грань правильной треугольной пирамиды, в ней нужно найти апофему MF. Мы знаем, что AM=10, а AF=6sqrt(3)/2=3sqrt(3), так как F - середина AB (треугольник ABM равнобедренный с основанием AB). Так как MF перпендикулярно AB, треугольник AFM прямоугольный, в нем известны катет AF  и гипотенуза AM. По теореме Пифагора найдем MF, MF=sqrt(73).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос