
Вопрос задан 03.02.2019 в 22:33.
Предмет Геометрия.
Спрашивает Смык Максим.
Найдите площадь круга и длину ограничивающей его окружности,если сторона правильного
треугольника,вписанного в него,равна 5√3

Ответы на вопрос

Отвечает Pham Vova.
Решим эту задачу без применения частной формулы для правильного треугольника:Проведем в правильном треугольника АВС к каждой из сторон высоты: AF, BH, CE. Точка пересечения О.Они будут и высотами и медианами и биссектрисами.Рассмотри треугольник AFC: он прямоугольный. Угол FAC равен 30 (AF - биссектриса)⇒FC=½АС = ½5√3.Находим катет AF: √((5√3)²-(½5√3)²) = √(75-75/4) = √(225/4) = 15/2Исходя из равенства всех треугольников, полученных в результате построения высот треугольниа АВС, точкой пересечения высоты делятся в соотношении 2:1, т. е. АО=⅔AF⇒AO=⅔*(15/2)=5 см. Это и есть радиус.Площадь S=πr²⇒S=25πДлина окружности L=2πr⇒L=10πЧастная формула гласит R=(√3/3)*a⇒R=(√3/3)*5√3=15/3=5 (т. е. верно)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili