
Вопрос задан 03.02.2019 в 14:13.
Предмет Геометрия.
Спрашивает Пивкина Женя.
В выпуклом четырехугольнике АВСД углы ДАС и ДВС равны. Докажите, что углы СДВ и САВ также равны.


Ответы на вопрос

Отвечает Тичинський Андрій.
На самом деле в условии неявно предполагается, что точки A и B лежат в одной полуплоскости относительно прямой CD. В противном случае это не так :).
Я в решении этим пользуюсь.
Все точки, из которых отрезок DC виден под тем же углом, что и из точки А, лежат на дуге CAD окружности, описанной вокруг треугольника ABC.
Доказать это очень просто - если точка B лежит где то в другом месте (в одной полуплоскости с точкой A), то прямая DB или прямая CB пересекает дугу CAD (пересекать дугу могут и обе прямые, но важно именно то, что одна прямая ОБЯЗАТЕЛЬНО пересекает дугу), и из точки пересечения B1 хорда видна под тем же углом, то есть получается треугольник BB1C (или BB1D, берется именно та прямая, которая пересекает дугу CAD), у которого внешний угол равен внутреннему. Чего быть не может :).
Поэтому четырехугольник ABCD вписанный, и углы CDB и CAB опираются на дугу CB. Поэтому они равны.
Я в решении этим пользуюсь.
Все точки, из которых отрезок DC виден под тем же углом, что и из точки А, лежат на дуге CAD окружности, описанной вокруг треугольника ABC.
Доказать это очень просто - если точка B лежит где то в другом месте (в одной полуплоскости с точкой A), то прямая DB или прямая CB пересекает дугу CAD (пересекать дугу могут и обе прямые, но важно именно то, что одна прямая ОБЯЗАТЕЛЬНО пересекает дугу), и из точки пересечения B1 хорда видна под тем же углом, то есть получается треугольник BB1C (или BB1D, берется именно та прямая, которая пересекает дугу CAD), у которого внешний угол равен внутреннему. Чего быть не может :).
Поэтому четырехугольник ABCD вписанный, и углы CDB и CAB опираются на дугу CB. Поэтому они равны.



Отвечает Нуреев Руслан.
Вариант решения.
Обоозначим точку пересечения DВ и АС буквой О.
Рассмотрим треугольники АОD и ВОС.
Они подобны. В них имеются два равных угла ( кроме DАС=DВС равны и вертикальные углы при О.)
(I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.)
Соответственные стороны подобных треугольников пропорциональны. DО:ОС=АО:ОВ.
В треугольниках DОС и АОВ вертикальные углы при О равны, стороны одного треугольника, содержащие этот угол, пропорциональны соответственным сторонам другого треугольника. Эти треугольники подобны.
(III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны).
Следовательно, СD:АВ=DО:ОА,
И углы СДВ и САВ, заключенные между пропорциональными сторонами этих треугольников, равны.
-----
[email protected]
Обоозначим точку пересечения DВ и АС буквой О.
Рассмотрим треугольники АОD и ВОС.
Они подобны. В них имеются два равных угла ( кроме DАС=DВС равны и вертикальные углы при О.)
(I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.)
Соответственные стороны подобных треугольников пропорциональны. DО:ОС=АО:ОВ.
В треугольниках DОС и АОВ вертикальные углы при О равны, стороны одного треугольника, содержащие этот угол, пропорциональны соответственным сторонам другого треугольника. Эти треугольники подобны.
(III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны).
Следовательно, СD:АВ=DО:ОА,
И углы СДВ и САВ, заключенные между пропорциональными сторонами этих треугольников, равны.
-----
[email protected]


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili