Вопрос задан 01.02.2019 в 21:22. Предмет Геометрия. Спрашивает Галань Вікторія.

Из точки на окружности, длина которой 52π см, опущен перпендикуляр на её диаметр. вычислите длины

отрезков, на которые он делит диаметр, если длина перпендикуляра равна 24 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Полухина Ульяна.
Построим к данной задаче рисунок.
1. Строим окружность с центром О.
2. Проведем диаметр в этой окружности ВС.
3. На окружности ставим точку А.
4. точку А соединим с Точками А и В. ΔАВС- прямоугольный, ∠ВАС - вписанный, опирается на диаметр. ∠ВАС=90°ю
5. С точки А опускаем перпендикуляр АD на диаметр ВС.
6. Проводим радиус АО.
Теперь переходим к решению задачи.
По условию длина окружности равна 2πR=52π: 2R=52; R=52/2=26 см.
ΔАОВ - равнобедренный; ОВ=ОА=26 см.
ΔАОD - прямоугольный, по теореме Пифагора
ОD²=ОА²-АD²=26²-24²=100; ОD=√100=10 см.
ВD=ОВ+ОD=26+10=36 см.
СD= ОС+ОD=26-10=16 см.
Ответ: 16 см; 36 см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос