
Вопрос задан 28.01.2019 в 08:46.
Предмет Геометрия.
Спрашивает Прокопьева Инна.
11 КЛАСС ПОМОГИТЕ ПОЖАЛУЙСТА!!! MABC - тетраэдр с высотой MC. Угол ACB=135 градусов, AC=a*корень из
2, BC=MC=a, E - середина АС, F - середина MB. Найти EF.

Ответы на вопрос

Отвечает Митрюхина Полина.
Опустим перпендикуляр FH на сторону ВС. FH - средняя линия треугольника МВС, поскольку точка F - середина стороны МВ (дано), а отрезок FH параллелен МС (так как оба отрезка - перпендикуляры к ВС).
В треугольнике ЕНС сторона ЕС=а√2/2, сторона НС=а/2, а сторону ЕН найдем по теореме косинусов:
ЕН²=ЕС²+НС²-2*ЕС*НС*CosC. CosC=Cos135°=Cos(180-45°)=-Cos45°=√2/2.
Итак, ЕH²=a²/2+a²/4+2*(а√2/2)*(а/2)*√2/2 = 5a²/4. ЕН=а√5/2.
В прямоугольном треугольнике EFH гипотенуза EF - искомый отрезок. Найдем его по Пифагору: EF=√(EH²+HF²). HF - это средняя линия треугольника ВМС и равна а/2.
Тогда EF=√(5a²/4+a²/4)=√(6a²/4) = а*(√6/2).
Ответ: EF=а√6/2.
В треугольнике ЕНС сторона ЕС=а√2/2, сторона НС=а/2, а сторону ЕН найдем по теореме косинусов:
ЕН²=ЕС²+НС²-2*ЕС*НС*CosC. CosC=Cos135°=Cos(180-45°)=-Cos45°=√2/2.
Итак, ЕH²=a²/2+a²/4+2*(а√2/2)*(а/2)*√2/2 = 5a²/4. ЕН=а√5/2.
В прямоугольном треугольнике EFH гипотенуза EF - искомый отрезок. Найдем его по Пифагору: EF=√(EH²+HF²). HF - это средняя линия треугольника ВМС и равна а/2.
Тогда EF=√(5a²/4+a²/4)=√(6a²/4) = а*(√6/2).
Ответ: EF=а√6/2.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili