
Вопрос задан 27.01.2019 в 06:49.
Предмет Геометрия.
Спрашивает Виркунен Полина.
В правильной трёхугольной пирамиде SABC с основанием ABC угол ASB равен 36°. На ребре SC взята
точка M так, что AM-биссектриса угла SAC. Площадь сечения пирамиды, проходящего через точки A, M и B, равна 25 корень 3. Найдите сторону основания

Ответы на вопрос

Отвечает Петров Михаил.
Нужное сечение — треугольник AMB.
Рассмотрим треугольник ASC. Он равнобедренный, и угол SAC = углу SCA = 72° Значит, угол МАС = 36°
Рассмотрим теперь треугольник CAM. Сумма его углов 180°, значит, угол АМС = 72°. Следовательно, треугольник CAM равнобедренный, и поэтому AC=AM. Аналогично находим, что BM=BC.
Таким образом, треугольник AMB равносторонний, и его сторона AB одновременно является стороной основания. По условию составим уравнение AB^2 (корень из 3) / 4 = 5 корень из 3откуда AB = корень из 20.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili