Вопрос задан 24.04.2018 в 13:55. Предмет Геометрия. Спрашивает Кот Катя.

30 БАЛЛОВ В трапеции ABCD найдите боковую сторону AB, если даны основания AD = 20 см, BC = 12 см и

угол АВС=120*. Угол СDА=30* Помогите ;-(
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Митасов Васёк.

В трапеции сумма углов, прилежащих к боковой стороне равна 180°.
Значит угол DАВ=180 - <ABC=180-120=60
°
 угол BCD=180 - <CDA=180-30=150°
Проведем из вершины С на основание АD прямую СЕ, параллельную стороне АВ. Получается четырехугольник АВСЕ - параллелограмм (противоположные стороны  параллельны), значит равны его противоположные стороны  (АВ=СЕ, ВС=АЕ=12) и противоположные углы (<DAВ=<ВСЕ=60°, <АВС=<CЕA=120°).
Рассмотрим ΔCDЕ, у него <DСЕ=<ВCD-<ВCЕ=150-60=90°, значит треугольник прямоугольный.
Найдем катет СЕ=DЕ*sin <CDA=(AD-AE)*sin 30=(20-12)*1/2=8*1/2=4 см
Значит АВ=4см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос