Вопрос задан 23.04.2018 в 12:10. Предмет Геометрия. Спрашивает Ралейно Дмитрий.

Используя теорему косинусов, решите треугольник ABC, если AC = 0,6 дм, BC = (корень 3)\4 дм, угол C

= 150 градусов.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зендрикова Ксюша.

По теореме косинусов:
AB² = CA² + CB² - 2CA·CB·cos150°
AB² = 0,36 + 3/16 - 2·0,6·√3/4·(- √3/2) = 0,5475 + 0,45 = 0,9975
AB = √0,9975 ≈ 0,9987 ≈ 1 дм

По теореме синусов:
АВ : sinC = AC : sinB
1 : sin150° = 0,6 : sinB
sinB ≈ 0,6 · 0,5 / 1 ≈ 0,3
∠B ≈ 18°

∠A ≈ 180° - 150° - 18° ≈ 12°


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос