
Вопрос задан 23.04.2018 в 12:10.
Предмет Геометрия.
Спрашивает Ралейно Дмитрий.
Используя теорему косинусов, решите треугольник ABC, если AC = 0,6 дм, BC = (корень 3)\4 дм, угол C
= 150 градусов.

Ответы на вопрос

Отвечает Зендрикова Ксюша.
По теореме косинусов:
AB² = CA² + CB² - 2CA·CB·cos150°
AB² = 0,36 + 3/16 - 2·0,6·√3/4·(- √3/2) = 0,5475 + 0,45 = 0,9975
AB = √0,9975 ≈ 0,9987 ≈ 1 дм
По теореме синусов:
АВ : sinC = AC : sinB
1 : sin150° = 0,6 : sinB
sinB ≈ 0,6 · 0,5 / 1 ≈ 0,3
∠B ≈ 18°
∠A ≈ 180° - 150° - 18° ≈ 12°



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili