Вопрос задан 18.01.2019 в 23:19. Предмет Геометрия. Спрашивает Архипов Данил.

Диагональ параллелограмма образует со сторонами углы 30 и 90 градусов. периметр параллелограмма

равен 36 см. найти стороны.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семененко Мария.

Обозначим параллелограмм буквами ABCD. Пусть диагональ BD образует углы:

угол DBA=30 градусов, угол DB=90 градусов

Обозначим сторону AB=a, сторону BC=b. Так как у параллелограмма противолежащие стороны равны, то AB=CD=a, BC=AD=b

По условию задачи периметр параллелограмма равен:

P=AB+BC+CD+AD=a+b+a+b=2(a+b)=36

a+b=18

Рассмотрим треугольник ABD. Он прямоугольный, угол BDA=90 градусов

Выразим сторону AD:

AD=AB*sinABD=a*sin30=a/2

Значит, b=a/2

Подставим b вместо a:

a+b=36

a+a/2=18

3a/2=18

a=12

b=6

Ответ: стороны параллелограмма равны 6см и 12см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос