Вопрос задан 13.01.2019 в 04:50. Предмет Геометрия. Спрашивает Конюхов Денис.

В основании пирамиды лежит треугольник со сторонами 15 см,16см и 17 см. Найдите площадь полной

поверхности пирамиды, если двугранные углы при основании пирамиды равны 60 градусов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Левашов Никита.

Площадь основания считается по формуле Герона: a = 15; b = 16; c = 17;

p = (a + b + c)/2 = 24; p - a = 9; p - b = 8; p - c = 7;

S = корень(24*9*8*7) = 24*корень(21);

Площадь боковой поверхности в данном  случае проще всего сосчитать по формуле

Sбок = S/cos(60) = 48*корень(21); площадь полной поверхности 72*корень(21).

 

Если надо -

доказать формулу Sбок*cos(Ф) = S, если все грани наклонены под одним углом, просто, если представить площадь основания как сумму площадей проекций боковых граней. Ясно, что у каждой боковой грани в качестве проекции - треугольник, у которого общее с гранью основание - это ребро основания пирамиды, а отношение высот как раз равно cos(Ф). Кроме того, при равных углах наклона боковых граней вершина пирамиды проектируется в центр вписанной окружности, поскольку эта проекция будет равноудалена от сторон оснований. Это означает, что все АПОФЕМЫ равны. И - само собой, доказывает необходимую формулу - достаточно просто сложить площади всех проекций боковых граней.

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос