Вопрос задан 11.01.2019 в 06:36. Предмет Геометрия. Спрашивает Волгин Дмитрий.

Перпендикуляр, который проведён из вершины прямоугольника к его диагонали, делит прямой угол в

отношении 8 : 1. Вычисли острый угол между диагоналями прямоугольника. пожалуйста срочно!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ляшенко Дмитрий.

∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.

∠CDE = 90° : 9 = 10°

Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:

∠DCE = 90° - ∠CDE = 90° - 10° = 80°


Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:

∠OCD = ∠ODC = 80°.

В ΔOCD находим третий угол:

∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос